1,995 research outputs found

    Radial penetration of flux surface shaping in tokamaks

    Full text link
    Using analytic calculations, the effects of the edge flux surface shape and the toroidal current profile on the penetration of flux surface shaping are investigated in a tokamak. It is shown that the penetration of shaping is determined by the poloidal variation of the poloidal magnetic field on the surface. This fact is used to investigate how different flux surface shapes penetrate from the edge. Then, a technique to separate the effects of magnetic pressure and tension in the Grad-Shafranov equation is presented and used to calculate radial profiles of strong elongation for nearly constant current profiles. Lastly, it is shown that more hollow toroidal current profiles are significantly better at conveying shaping from the edge to the core.Comment: 11 pages, 13 figure

    Optimized up-down asymmetry to drive fast intrinsic rotation in tokamaks

    Get PDF
    Breaking the up-down symmetry of the tokamak poloidal cross-section can significantly increase the spontaneous rotation due to turbulent momentum transport. In this work, we optimize the shape of flux surfaces with both tilted elongation and tilted triangularity in order to maximize this drive of intrinsic rotation. Nonlinear gyrokinetic simulations demonstrate that adding optimally-tilted triangularity can double the momentum transport of a tilted elliptical shape. This work indicates that tilting the elongation and triangularity in an ITER-like device can reduce the energy transport and drive intrinsic rotation with an Alfv\'{e}n Mach number on the order of 1%1\%. This rotation is four times larger than the rotation expected in ITER and is sufficient to stabilize MHD instabilities. It is shown that this optimal shape can be created using the shaping coils of several experiments.Comment: 16 pages, 5 figure

    Detection and Prevention of Android Malware Attempting to Root the Device

    Get PDF
    Every year, malefactors continue to target the Android operating system. Malware which root the device pose the greatest threat to users. The attacker could steal stored passwords and contact lists or gain remote control of the phone. Android users require a system to detect the operation of malware trying to root the phone. This research aims to detect the Exploid, RageAgainstTheCage, and Gingerbreak exploits on Android operating systems. Reverse-engineering 21 malware samples lead to the discovery of two critical paths in the Android Linux kernel, wherein attackers can use malware to root the system. By placing sensors inside the critical paths, the research detected all 379 malware samples trying the root the system. Moreover, the experiment tested 16,577 benign applications from the Official Android Market and third party Chinese markets which triggered zero false positive results. Unlike static signature detection at the application level, this research provides dynamic detection at the kernel level. The sensors reside in-line with the kernel\u27s source code, monitoring network sockets and process creation. Additionally, the research demonstrates the steps required to reverse engineer Android malware in order to discover future critical paths. Using the kernel resources, the two sensors demonstrate efficient asymptotic time and space real-world monitoring. Furthermore, the sensors are immune to obfuscation techniques such as repackaging

    Conditions for up-down asymmetry in the core of tokamak equilibria

    Full text link
    A local magnetic equilibrium solution is sought around the magnetic axis in order to identify the key parameters defining the magnetic-surface's up-down asymmetry in the core of tokamak plasmas. The asymmetry is found to be determined essentially by the ratio of the toroidal current density flowing on axis to the fraction of the external field's odd perturbation that manages to propagate from the plasma boundary into the core. The predictions are tested and illustrated first with an analytical Solovev equilibrium and then using experimentally relevant numerical equilibria. Hollow current-density distributions, and hence reverse magnetic shear, are seen to be crucial to bring into the core asymmetry values that are usually found only near the plasma edge.Comment: 6 pages, 2 figures, submitted for publicatio

    On the Complexity of Decomposable Randomized Encodings, Or: How Friendly Can a Garbling-Friendly PRF Be?

    Get PDF

    Teaching TAs To Teach: Strategies for TA Training

    Get PDF
    "The only thing that scales with undergrads is undergrads". As Computer Science course enrollments have grown, there has been a necessary increase in the number of undergraduate and graduate teaching assistants (TAs, and UTAs). TA duties often extend far beyond grading, including designing and leading lab or recitation sections, holding office hours and creating assignments. Though advanced students, TAs need proper pedagogical training to be the most effective in their roles. Training strategies have widely varied from no training at all, to semester-long prep courses. We will explore the challenges of TA training across both large and small departments. While much of the effort has focused on teams of undergraduates, most presenters have used the same tools and strategies with their graduate students. Training for TAs should not just include the mechanics of managing a classroom, but culturally relevant pedagogy. The panel will focus on the challenges of providing "just in time", and how we manage both intra-course training and department or campus led courses

    Social networks : the future for health care delivery

    Get PDF
    With the rapid growth of online social networking for health, health care systems are experiencing an inescapable increase in complexity. This is not necessarily a drawback; self-organising, adaptive networks could become central to future health care delivery. This paper considers whether social networks composed of patients and their social circles can compete with, or complement, professional networks in assembling health-related information of value for improving health and health care. Using the framework of analysis of a two-sided network – patients and providers – with multiple platforms for interaction, we argue that the structure and dynamics of such a network has implications for future health care. Patients are using social networking to access and contribute health information. Among those living with chronic illness and disability and engaging with social networks, there is considerable expertise in assessing, combining and exploiting information. Social networking is providing a new landscape for patients to assemble health information, relatively free from the constraints of traditional health care. However, health information from social networks currently complements traditional sources rather than substituting for them. Networking among health care provider organisations is enabling greater exploitation of health information for health care planning. The platforms of interaction are also changing. Patient-doctor encounters are now more permeable to influence from social networks and professional networks. Diffuse and temporary platforms of interaction enable discourse between patients and professionals, and include platforms controlled by patients. We argue that social networking has the potential to change patterns of health inequalities and access to health care, alter the stability of health care provision and lead to a reformulation of the role of health professionals. Further research is needed to understand how network structure combined with its dynamics will affect the flow of information and potentially the allocation of health care resources
    corecore